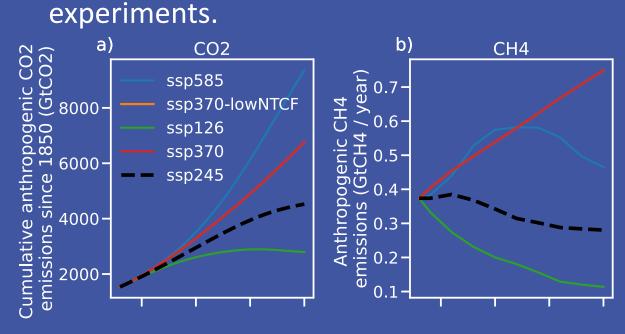
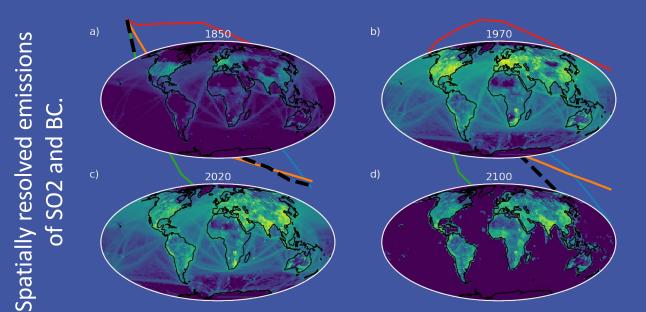
ClimateBench v1.0: A benchmark for data-driven climate projections

D. Watson-Parris¹, <u>Y. Rao²</u>, D. Olivié³, Ø. Seland³, P. Nowack⁴, G. Camps-Valls⁵, P. Stier¹, S. Bouabid¹, M. Dewey⁶, E. Fons⁷, J. Gonzalez⁸, P. Harder^{1,9}, K. Jeggle⁷, J. Lenhardt⁸, P. Manshausen¹, M. Novitasari¹⁰, L. Ricard¹¹, C. Roesch¹²


¹University of Oxford; ²North Carolina State University; ³Norwegian Meteorological Institute; ⁴Climatic Research Unit; ⁵ Universitat de València; ⁶Stockholm University; ⁷ETH Zurich; ⁸Universität Leipzig; ⁹Fraunhofer ITWM; ¹⁰University College London; ¹¹Ecole Polytechnique Fédérale de Lausanne; ¹²University of Edinburgh


INTRODUCTION

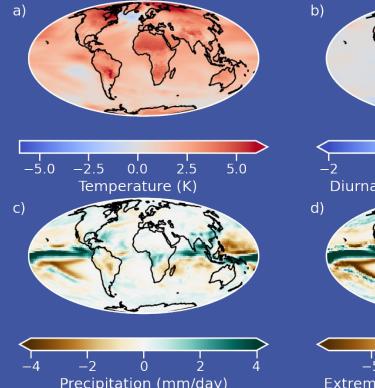
- It is impractical to use fully-coupled Earth system models to fully explore all possible future emission pathways.
- ClimateBench the first benchmarking framework based on a suite of state-of-theart simulations performed by a full complexity Earth System Model (ESM),
- Including a set of baseline machine learning models that emulate temperature and precipitation (including extreme precipitation) to a variety of forcers (carbon dioxide, methane and aerosols).

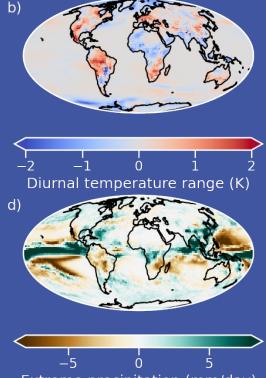
DATA & WORKFLOW

• Input: Emission data from historical, ScenarioMIP, DAMIP & AerChemMIP

Data-driven climate projections could enable exploration of climate responses given a wide range of emissions scenarios using efficient emulator of Earth system models.

*This work is a result from the jointed virtual hackathon between 3rd NOAA AI Workshop and Climate Informatics.

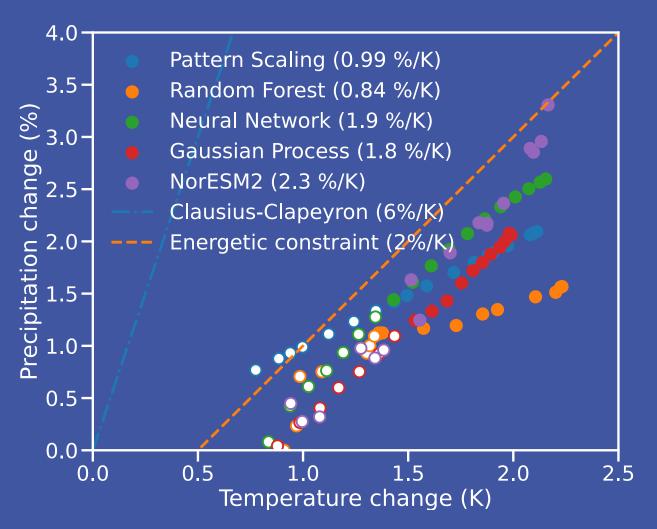



Get our paper!

DATA & WORKFLOW

• **Output**: NorESM2 temperature and precipitation simulations.

EVALUATION METRICS


• The target evaluation metric is a combination of the RMSE over the spatial and global mean scales, $NRMSE_t$:

$$NRMSE_{s} = \sqrt{\left\langle \left(\left| x_{i,j,t} \right|_{t} - \left| y_{i,j,t,n} \right|_{n,t} \right)^{2} \right\rangle / \left| \left\langle y_{i,j} \right\rangle \right|_{t,n}}$$
$$NRMSE_{g} = \sqrt{\left| \left(\left\langle x_{i,j,t} \right\rangle - \left\langle \left| y_{i,j,t,n} \right|_{n} \right\rangle \right)^{2} \right|_{t} / \left| \left\langle y_{i,j} \right\rangle \right|_{t,n}}$$

 $NRMSE_t = NRMSE_s + \alpha * NRMSE_g$,

DISCUSSION

• All emulators broadly respect global conservation of energy in global mean precipitation change, but that the RF and Pattern scaling baseline significantly underpredict the hydrological sensitivity.

• Future work is embedding physical constraints into hybrid models to allow improved accuracy, robustness and generalisability, and ultimately trust.