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Commercial cathodes for Li-ion batteries typically 

use LiMO2 materials
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Charging
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Discharging

The chemical formulas of most 

common cathode materials 

follow a LiMO2 format

 where M stands for one or more 

transition metals such as nickel 

(Ni), cobalt (Co) or manganese 

(Mn)

The ratio of lithium to transition metals in the LiMO2 chemistry is 1:1 

→ for every one transition metal atom, one lithium atom contributes 

to charge storage

Nitta, Yushin, et al. Mat. Tod. 18 (5), 252-264 (2015) 

Why lithium and manganese rich oxides?

Manganese is earth-

abundant, economically 

viable, and known to 

enhance cathode safety 

(especially compared to 

cobalt and nickel)

The excess Li+ in these 

materials enables high 

energy densities 

Lithium & manganese rich (LMR) oxide materials have lithium : 

transition metal ratios greater than one, and manganese makes up 

over 50% of the transitional metal content. This chemistry has several 

benefits—

Chen, et al. J. Electrochem. Soc., 168, 

080506 (2021) 

Rana, et al. J. Mater. Chem. A. 2, 9099-9110 

(2014)

LMR electrodes demonstrate 

acceptable capacity retention even 

under aggressive cycling protocols

What is the effect of including cobalt in LMR materials?

• Cobalt is commonly used in lithium-ion batteries, but is expensive and 

difficult to access – creates supply chain issues and drives up the cost of 

lithium-ion batteries that use it

• Co stabilizes the structures of other cathode chemistries, but its effect in 

LMR materials is not well-studied. In general:

• Cobalt-containing oxides have good electrochemical reversibility

• Co3+ improves electronic conductivity within oxide & reduces 

impedance → facilitates fast energy storage
  

Cobalt-containing electrodes deliver less energy during 

discharge compared to cobalt-free electrodes 

Why does including cobalt 

deteriorate the performance of 

LMR materials?

• Adding a small amount of cobalt limits the 

energy storage capacity→ the voltage 

under 3.2V isn’t accessed in the cobalt-

containing materials 

Nitta, Yushin, et al. Mat. Tod. 18 (5), 252-264 (2015) 

We electrochemically tested LMR materials with varying amounts of cobalt:
0% Co: 0.3Li2MnO3 * 0.7LiMn0.50Ni0.50O2

5% Co: 0.3Li2MnO3 * 0.7LiMn0.47Ni0.47Co0.05O2

15% Co: 0.3Li2MnO3 * 0.7LiMn0.42Ni0.42Co0.15O2

https://www.cobaltinstitute.org/about-cobalt/cobalt-life-cycle/

• LMR materials with cobalt cannot access 

low-voltage capacity during initial use 

• cobalt-containing materials having 

less energy storage capacity than 

cobalt-free materials

• For small amounts of cobalt (5%), 

access to this low-voltage capacity 

can be regained upon cycling 

• There don’t seem to be any significant 

differences in the structures of cobalt-

containing and cobalt-free LMR materials. 

Why is the low-voltage capacity initially 

inaccessible in Co-containing materials?

Conclusions & Open Questions


	Slide 1

