

Can agricultural residues be the future of textiles?

Produce textile-grade cellulosic fibers from more environmentally friendly than synthetics and cotton.

Formation of Carbamate Derivative Formation of Carbamate Derivative

Ryen Frazier, Dr. Ronalds Gonzalez, Dr. Ericka Ford, Dr. Richard Venditti, Dr. Orlando Rojas, Dr. Joel Pawlak

- High energy demand of sodium hydroxide ^[1]
- more sustainable coagulation ^[1]

Considerations with non-woods

Purity/Fiber Structure

Costs

- condition
- Scaling up
 - integrated into viscose operations

Possibilities & Opportunities

- \bullet
- based regenerated fibers

NC STATE UNIVERSITY

Dissolving pulp is first derivatized to add functionality and improve subsequent dissolution

> Derivative is dissolved and then wet-spun to form regenerated cellulose filaments

Effective recycling of coagulant is important for keeping the process

Conclusions

• Lignocellulosic biomass tends to have higher silica and lignin contents than wood and higher impurity levels overall [2]. Non-wood fiber structure differs from wood, keeping some impurities less accessible in the raw material [3].

Storage of non-woods and logistics to keep biomass in good

Dissolving pulp is more expensive than lower-grade pulps

Cellulose carbamate is only done commercially by one company (Infinited Fiber), but this process could be

Cellulose carbamate has successfully been made from wheat non-wood dissolving pulp, spun fibers and properties pending Additives (plasticizers, cross-linkers, etc.) may be able to bridge the performance gap between non-wood and wood-