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Commercial cathodes for Li-ion batteries typically 

use LiMO2 materials

𝐶𝑎𝑡ℎ𝑜𝑑𝑒: 𝐿𝑖𝑀𝑂2 → 𝐿𝑖(1−𝑥)𝑀𝑂2 + 𝑥𝐿𝑖
+
+𝑥𝑒

−

𝐴𝑛𝑜𝑑𝑒: 6𝐶 + 𝑥𝐿𝑖
+
+ 𝑥𝑒

−
→ 𝐿𝑖𝑥 𝐶6

Charging

𝐶𝑎𝑡ℎ𝑜𝑑𝑒: 𝐿𝑖(1−𝑥)𝑀𝑂2 + 𝑥𝐿𝑖
+
+𝑥𝑒

−
→ 𝐿𝑖𝑀𝑂2

𝐴𝑛𝑜𝑑𝑒: 𝐿𝑖𝑥𝐶6 → 6𝐶 + 𝑥𝐿𝑖
+
+ 𝑥𝑒

−

Discharging

The chemical formulas of most 

common cathode materials 

follow a LiMO2 format

where M stands for one or more 

transition metals such as nickel 

(Ni), cobalt (Co) or manganese 

(Mn)

The ratio of lithium to transition metals in the LiMO2 chemistry is 1:1 

→ for every one transition metal atom, one lithium atom contributes 

to charge storage

Nitta, Yushin, et al. Mat. Tod. 18 (5), 252-264 (2015) 

Why lithium and manganese rich oxides?

Manganese is earth-

abundant, economically 

viable, and known to 

enhance cathode safety 

(especially compared to 

cobalt and nickel)

The excess Li in these 

materials enables high 

energy densities 

Lithium & manganese rich (LMR) oxide materials have lithium : 

transition metal ratios greater than one, and manganese makes up 

over 50% of the transitional metal content. This chemistry has several 

benefits—

Chen, et al. J. Electrochem. Soc., 168, 

080506 (2021) 

Nitta, Yushin, et al. Mat. Tod. 18 (5), 252-264 (2015) 

Rana, et al. J. Mater. Chem. A. 2, 9099-9110 

(2014)

LMR electrodes demonstrate 

acceptable capacity retention even 

under aggressive cycling protocols

Challenges facing LMR materials: structural degradation 

upon prolonged or fast cycling

LMR materials are “activated” by removing lithium ions from LiMn6 sites, 

which begins ~ 4.5 V, as shown in (a)

Activation maximizes cyclable energy 

storage capacity, but introduces two distinct 

degradation mechanisms: 

• Voltage fade (b): Lowers overall energy 

deliverable by the battery over time

• Charge/discharge hysteresis from transition 

metal migration: Can decrease efficiency of 

the charge-discharge process with cycling

(a)

(b)

Cycle #

Co stabilizes the structures of other cathode chemistries,

but its effect in LMR materials is not well-studied

• Cobalt-containing oxides have good electrochemical reversibility

• Co3+ improves electronic conductivity within oxide & reduces impedance

→ facilitates fast energy storage

Can cobalt enhance 

the rate-dependent 

cycling stability of 

LMR oxides? 

Research Question 

& Objectives

1) Prepare cathodes with 

0%, 5%, and 15% Co

0% Co: 

0.3Li2MnO3 * 0.7LiMn0.50Ni0.50O2

5% Co: 

0.3Li2MnO3 * 0.7LiMn0.47Ni0.47Co0.05O2

15% Co: 

0.3Li2MnO3 * 0.7LiMn0.42Ni0.42Co0.15O2

2) Investigate the effect 

of Co on the 

electrochemistry 

(capacity retention, 

rate performance) of 

LMR oxides

Electrodes with cobalt have less 

cyclable capacity; but can potentially 

access that capacity faster and more 

consistently
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Despite starting 

with much higher 

capacity, the 

capacity for the 

0% cobalt sample 

diminishes quickly 

to approach the 

capacities of the 

5% & 15% cobalt 

samples 

The 5% & 15% 

cobalt samples 

retain significantly 

more of their 

original discharge 

capacity 

compared to the 

0% cobalt sample

Cobalt affects the reversibility 

of the activation process

• Adding a small amount of cobalt results in 

inaccessible low voltage sites→ reducing 

overall capacity
Second cycle (after activation)

Only 0% 

cobalt 

sample 

accesses 

low voltage 

capacity

In progress: continuing these tests of the rate 

performance under progressively faster discharge rates

Ongoing work

• Comparing the long term (100+ cycles) 

cycling stability at a variety of current 

rates

• If Co-containing materials show 

superior long-term cycling 

performance → can they be made into 

thick electrodes for high power 

density?

0%

20%

40%

60%

80%

100%

120%

0 50 100 150

C
a
p

a
c
it

y
 R

e
te

n
ti

o
n

 
(%

)

Cycle Number

Cycling stability of 0% cobalt LMR material

Thackeray, M. M, et al. Sus. Energy & Fuels 2(7), 1375–1397 (2018) 


